Proteoglycan synthesis in human and murine haematopoietic progenitor cell lines: isolation and characterization of a heparan sulphate proteoglycan as a major proteoglycan from the human haematopoietic cell line TF-1.
نویسندگان
چکیده
Proteoglycans of bone-marrow stromal cells and their extracellular matrix are important components of the microenvironment of haematopoietic tissues. Proteoglycans might also be involved in the interaction of haematopoietic stem and stromal cells. Recently, several studies have been reported on the proteoglycan synthesis of stromal cells, but little is known about the proteoglycan synthesis of haematopoietic stem or progenitor cells. Here we report on the isolation and characterization of proteoglycans from two haematopoietic progenitor cell lines, the murine FDCP-Mix A4 and the human TF-1 cell line. Proteoglycans were isolated from metabolically labelled cells and purified by several chromatographic steps, including anion-exchange and size-exclusion chromatography. Biochemical characterization was performed by electrophoresis or gel-filtration chromatography before and after digestion with glycosaminoglycan-specific enzymes or HNO2 treatment. Whereas FDCP-Mix A4 cells synthesize a homogeneous chondroitin 4-sulphate proteoglycan, isolation and characterization of proteoglycans from the human cell line TF-1 revealed, that TF-1 cells synthesize, in addition to a chondroitin sulphate proteoglycan, a heparan sulphate proteoglycan as major proteoglycan. For this heparan sulphate proteoglycan a core protein size of approx. 59 kDa was determined. Immunochemical analysis of this heparan sulphate proteoglycan revealed that it is not related to the syndecan family nor to glypican.
منابع مشابه
Expression of glypican-4 in haematopoietic-progenitor and bone-marrow-stromal cells.
Heparan sulphate proteoglycans and the extracellular matrix of bone-marrow-stromal cells are important components of the microenvironment of haematopoietic tissues and are involved in the interaction of haematopoietic stem and stromal cells. Previous studies have emphasized the role of heparan sulphate proteoglycan synthesis by bone-marrow-stromal cells. In the present study we describe the exp...
متن کاملProteoglycan synthesis in haematopoietic cells: isolation and characterization of heparan sulphate proteoglycans expressed by the bone-marrow stromal cell line MS-5.
Proteoglycans of bone-marrow stromal cells and their extracellular matrix are important components of the haematopoietic microenvironment. Recently, several studies have indicated that they are involved in the interaction of haematopoietic stem and stromal cells. However, a detailed characterization of the heparan sulphate proteoglycans synthesized by bone-marrow stromal cells is still lacking....
متن کاملHeparan sulfate proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells.
Heparan sulfate (HS) proteoglycans of bone marrow (BM) stromal cells and their extracellular matrix are important components of the microenvironment of hematopoietic tissues and are involved in the interaction of hematopoietic stem and stromal cells. Although previous studies have emphasized the role of HS proteoglycan synthesis by BM stromal cells, we have recently shown that the human hematop...
متن کاملSignificantly reduced expression of the proteoglycan decorin in Alzheimer's disease fibroblasts.
Aims-To investigate whether proteoglycan synthesis is altered in skin fibroblasts in patients with Alzheimer's disease compared with normal subjects.Methods-Cell lines obtained from donors with Alzheimer's disease and healthy controls were incubated with radioactive sulphate. The proteoglycans synthesised were determined and analysed by chromatographic, sodium dodecyl sulphate-polyacrylamide ge...
متن کاملCapability of Platelet Factor 4 to Induce Apoptosis in the Cancerous Cell Lines in Vitro
Background and Aims: Platelet factor 4 (PF4) or CXCL4 is a member of CXC chemokine family which is stored in alpha granules of platelets. The main function known for PF4 is angiostasis which may contribute to prevent tumor metastasis. This feature is mediated by CXCR3 on the endothelial cells. Our principal aim was to study the apoptosis induction in three cell lines treated with PF4 and obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 317 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1996